RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2016

SECOND YEAR [BATCH 2014-17]

CHEMISTRY (General)

Date : 27/05/2016 Time : 11 am – 2 pm

Paper : IV

Full Marks : 75

[Use a separate Answer Book for <u>each group</u>]

<u>Group – A</u>

[Attempt one question from each Unit]

<u>Unit – I</u>

1.	a)	Give the name and formula of the principal ore of Nickel. How is it extracted by Mond's	5	
		process? How is Nickel ion detected in solution?	[4+3+2]	
	b)	Cupric ion is more stable in water than cuprous ion. Explain.	[2]	
	c)	What happens when potassium iodide is added slowly and finally in excess to an aqueous solution of mercuric chloride and ammonia gas is passed after making the resulting solution alkaline?	s 1 [2]	
		at nd	[-]	
2.	a)	The sum of 1^{st} and 2^{int} ionisation energies of zinc, cadmium and mercury are as follows 2639 (Zn), 2507 (Cd) and 2816 (Hg) KJ mol ⁻¹ . Explain this phenomenon.) [3]	
	b)	What is meant by abnormal transport number of CdI ₂ ? Explain.	[2.5]	
	c)	Comment about the stable oxidation state of copper, silver and gold.	[2.5]	
	d)	Why are bivalent copper salts more stable than monovalent ones?	[2]	
	e)	Calculate the equivalent weight of $KMnO_4$ as an oxidant in acidic and alkaline medium. (K = 39 $Mn = 55$, $O = 16$]	, [3]	
<u>Unit – II</u>				
3.	a)	Explain the main difference between systematic error and random error.	[3]	
	b)	How Fe^{+2} is determined by permanganometry? And also discuss the role of Z.R. reagent in this method.	s [3]	

- c) Explain the role of ammonium bifluoride in the quantitative analysis of a mixture of iron and copper. [4]
- d) What are the roles of Ca and Mg in the complexometric titration of EDTA?
- 4. a) What do you mean by precision and accuracy of a chemical analysis?
 - b) How coprecipitation can be avoided in a gravimetric analysis?
 - c) Discuss the gravimetric analysis of Aluminium.
 - d) Explain the term solubility product with example. What do you mean by common ion effect? How does common ion effect influence precipitation reactions? [2+1+1]

<u>Group - B</u>

[Attempt <u>one question from each Unit]</u>

<u>Unit – III</u>

5. a) Carry out the following conversions.

[2×2]

[2]

[3]

[2]

[3]

	b)	Give a chemical test for each to distinguish between		
		i) acetaldehyde and benzaldehyde ii) aniline and nitrobenzene [2+2]		
	c)	Explain with suitable example the B_{AC}^2 mechanism of hydrolysis of ester. [2]		
	d)	Write short notes on : $[2 \times 2 \cdot 5]$		
		i) Hofmann degradation method ii) Kolbe Reaction		
6.	a)	How will you obtain methylamine and ethylamine from acetamide? [2]		
	b)	Discuss the process of separation of primary, secondary and tertiary amines by Heinsberg's		
		method. Give suitable reactions. [4]		
	c)	Which one of the following pair of compounds is more basic? Justify your choice.[2]		
		CH ₃ CH ₃ NMe ₂		
		Me Me		
		and O		
		NO_2		
	d)	Write short notes on : [5]		
		i) Claisen Rearrangement ii) Reimer-Tiemann reaction		
	e)	Predict the products when p-toluidine is treated with NaNO ₂ /HCl and the resultant solution is		
		added to cold alkaline β –Naphthol solution. [2]		
		$\underline{\text{Unit} - \text{IV}}$		
7.	a)	Write short notes on the following (any one): [3]		
	,	i) Osazone formation ii) Isoelectric point		
	b)	Glucose undergoes mutarotation but methyl glucoside does not. Explain. [2]		
	c)	How is aldopentose converted to aldohexose and vice versa? $[2\cdot5+2\cdot5]$		
8	a)	Give the names and structures of two α -amino acids. State with equations Gabriel pthalimide		
0.)	synthesis of glycine. [1+1+3]		
	b)	Predict the product of the following reaction in Haworth projection formula. [2]		
		$\alpha - D - glucopyranose \xrightarrow{CH_3OH}_{0.5\%} HCL \Lambda$.		
	c)	Write down the primary structure of the following tripeptide. Ala gly phe [1]		
	d)	Define with example : Epimer [2]		
Group – C				
[Attempt one question from each Unit]				
<u>Unit – V</u>				
		Two Compton since working between the same temperature demains have the same officiance		

- a) Two Carnot engines working between the same temperature domains have the same efficiency. Explain.
- b) Prove that all spontaneous processes are accompanied by an increase in entropy. [2]
- c) 'Boiling of water is an enthalpy driven process' —mention whether this statement is right or wrong. If wrong what will be the correct form. [2]
- d) A reaction is represented as $\gamma_A A + \gamma_B B \rightleftharpoons \gamma_C C + \gamma_D D$.
 - i) Define equilibrium constant for the process in terms of partial pressures of A, B, C and D.
 - ii) Define standard free energy change of the above reaction.
 - iii) Write down the relationship between standard free energy change and equilibrium constant. $[3\times 2]$
- 10. a) State Le-Chatelier's principle and apply it for the following equilibrium :

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) - 17Kcal$$

[2]

[1+3]

- b) Consider the reaction (all species gaseous) $A + 2B \rightleftharpoons C + \Delta$ (heat):
 - i) Comment whether the equilibrium constant for the above reaction will have unit.
 - ii) Prove that the equilibrium constant for such a reaction (K_p) changes with temperature (T) in accordance with the following equation

$$\left(\frac{\partial \ln K_p}{\partial T}\right)_p = \frac{\Delta H^\circ}{RT^2}$$
 [assume the form of Gibb's Helmholtz equation]

- iii) From (ii) comment whether the equilibrium constant for the above reaction will increase or decrease with increase in temperature. [3×2]
- c) Write down the relationship between entropy and thermodynamic probability. [2]

<u>Unit – VI</u>

- 11. a) i) Write down Raoult's law of vapor pressure for a solution in equilibrium with vapor.
 - ii) Plot solvent vapor pressure against mole fraction of the solute in case of an ideal solution.
 - iii) Arrange the following solutions according to the increasing boiling point of water with proper explanation. 0.1(M) sugar, 0.1(M) NaCl, 0.1(M) K₂SO₄. [3×2]
 - b) Draw the phase diagram of carbon dioxide system and describe the same briefly.
 - c) What do you mean by a eutectic mixture?
- 12. a) i) Consider the chemical equilibrium $A+B \rightleftharpoons C+D$ (all species A, B, C, D gaseous) Determine the no. of component, no. of phases and degrees of freedom of the system.
 - ii) Account for the fact that CO_2 sublimates at normal atmospheric pressure but H_2O does not. [3+3]

[5]

[2]

- b) State and explain Schulze-Hardy rule with a suitable example. What do you mean by the statement— 'gold number of haemoglobin is 0.05'? [3+1]
- c) What do you mean by electrophoresis of colloids? Write a short note on the stability of both lyophilic and lyophobic colloids. [1+2]

– × ——